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Superplastic Sheet Metal Forming of a Generalized Cup 
Part I: Uniform Thinning 

N. Chandra and D. Kannan 

Superplasticity is the phenomenon observed in certain materials that deform on the order of 300 to 500% 
under very low flow stress, high temperature, and fine grain structure. Superplastically formed parts find 
application as both structural and nonstructural components in simple and complex shapes. Mathemati- 
cal models that describe the forming process with optimum strain rate and tool geometry as input and 
pressure-time and thickness as output are essential for successful forming. This article describes the de- 
formation of a generalized cup assuming uniform thinning in the unsupported region. Closed form equa- 
tions are developed relating process parameters like pressure-time loading and thickness distribution to 
the shape of the cup and material properties. The generalized cup formulation is applicable to the super- 
plastic forming of domes, right circular cylinders, deep slanted cups, and cones. 

1. Introduction 

SUPERPLASTIC1TY in materials is the ability of materials to 
achieve large uniform elongations only under specific condi- 
tions of temperature and strain rate. [1] Superplastic forming 
(SPF) is an important industrial process that has found applica- 
tions in sheet metal forming in the aerospace and automotive 
industries. The ability to form complex shapes reduces overall 
manufacturing cost by reducing the total number of tool and 
part counts and consequently the number of forming and as- 
sembly operations. To maintain superplastic characteristics of 
materials under superplastic forming, forming is to be carried 
out at the specific optimum strain rate. Models that describe the 
forming process with optimum strain rate, material properties, 
and die geometry as input, and pressure-time and thickness- 
profile as output are essential not only for successful forming, 
but also for the overall economy of superplastic forming. Many 
researchers have attempted to model superplastic forming us- 
ing various numerical techniques including simplified and fi- 
nite-element methods. In simplified methods, the process 
variables are determined by assuming the shape of deformation 
and a specific form of thinning. [2,3] In finite-element methods, 
the undeformed sheet is divided into a number of continuum or 
structural elements depending on the planes of symmetry, and 
the effect of friction, material behavior, and complex geometry 
can be easily incorporated in these methods. [4,5] Simplified 
methods are attractive because they can be formulated and im- 
plemented with ease and are suitable for design situations in 
which the effect of variation of material property, die geometry, 
and sheet thickness may be studied rapidly and used as a tool 
for the designer to reach the final configuration. 

In this article, equations describing the mechanics of defor- 
mation of a generalized axisymmetric cup are developed. The 
generalized cup equations can be specialized to a dome, cone, 
right circular cylinder, and a variety of cups with draft angles, 
flanges, and die entry radii by proper choice of geometric pa- 
rameters. In Part I, closed form solutions are derived based on 
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uniform thinning in the unsupported region, and this assump- 
tion leads to explicit relationships between various process and 
geometric variables. The uniform thinning assumption is 
strictly valid only when the material is highly superplastic 
(very high strain-rate sensitivity), or where the maximum final 
strain is not very large. In a typical forming process, there is a 
thickness variation in the unsupported region and, the variation 
has been observed experimentally by various researchers. [6-12] 
This is the subject of Part II. By assuming uniform thinning in 
the unsupported region, equations between the various process 
variables are developed in Part I. These equations are very use- 
ful in many preliminary investigations of superplastic forming, 
e.g., in establishing if a component can be formed or not, and in 
quickly conducting a parametric study. Such situations often 
arise in the design of superplastic forming components. 

2. Mechanics of Oome Forming 

The constitutive equation describing the mechanical behav- 
ior of  superplastic material is generally given by the power-law 
equation G = KE m, where o is the flow stress and ~ is the strain 
rate. K and m are the material parameters, where K is the 
strength coefficient, and m is the strain-rate sensitivity factor. 
Other forms of equations that include the effect of grain size 
and strain hardening have been postulated, and an excellent re- 
view of these equations is given inRef 1. Each superplastic ma- 
terial has an optimum value of e (or a narrow band) where 
maximum superplasticity is exhibited, and it is a process re- 
quirement to maintain this value of e at all the stages of  defor- 
mation. The determination of  pressure-time loading required to 
achieve this e value is the main purpose of the process model. 

Certain basic assumptions are made in modeling the forma- 
tion of a superplastic dome. The first stage of any axisymmetric 
component is a dome, as shown in Fig. 1. It is assumed that the 

Fig. 1 Bulge forming of a superplastic sheet with geometric 
parameters. 

dome is part of a spherical segment, and this geometric assump- 
tion is validated by experiments done on physical models and 
superplastic alloys like aluminum 7475 and Ti-6AI-4V.I6-12] 
However, deviation from spherical shape has also been ob- 
served when the material has low m values (less superplastic), 
or when the sheet is subjected to bending moments.II31 Based 
on experimental work performed on Zn-Ai superplastic eutec- 
toid, Brandonll3l postulated an ellipsoidal shape for the de- 
forming dome; the parameters describing the shapes were 
obtained from experiments. Because the postulated shapes are 
arbitrary and the effects of the shape change are not significant, 
spherical shape with a single radius of curvature will be used in 
this work. 

For any segment whose thickness to radius of  curvature ra- 
tio s/p < 1/20, the segment is considered to be a shell or else a 
plate, according to the membrane theory. In the case of super- 
plastically formed component, s/p is normally less than this ra- 
tio, and hence, membrane theory holds good with the 
consequent assumption of plane stress throughout the sheet. In 
superplastic forming, the edge of the dome is constrained from 
deformation. Hence, the circumferential strain is assumed to be 
zero, with deformation restricted to meridian and thickness 
planes. The geometric center is the pole and, from symmetry 
considerations, is in a state of balanced biaxial stress and strain. 
In Part I, it is further assumed that the thickness of the sheet in 
the unsupported region is uniform. As will be shown in Part II, 
this assumption is not exact for materials with low m values, 
and the error increases with strain. 

3. Kinematics of a Generalized Cup 

In this section, the thickness at various stages of deforma- 
tion of  a generalized cup is described, with the assumption that 
the thickness is uniform in the free-forming region and that the 
thickness remains unchanged once the sheet contacts the die, 
which is the case for sticking friction. 

3.1 Dome Model  

Consider a fiat superplastic circular sheet of radius a, with 
an initial thickness, so that is allowed to form freely into a 
dome. The initial volume of the sheet is given by: 

V 0 = rta2So [ 1 ] 

Figure 1 shows the free-forming dome with various geometric 
parameters. The radius of curvature of the deformed sheet is 
given by: 

h 2 + a 2 
P - 2h [2] 

where h is the instantaneous height of the dome formed (at the 
pole), and s is the instantaneous thickness of the deforming 
dome. The volume of  the spherical segment is 

V = 2 n p h s  [3] 
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Because the material is incompressible in the inelastic regime, 
the two volumes V and V 0 can be equated. Using p in Eq 2: 

s:s0 / [41 

Equation 4 gives the instantaneous thickness until the sheet 
contacts any side wall. The thickness for hemispherical dome 
when h = a is 

S o 
S - -  

2 

3.2 Generalized Cup  

Figure 2 describes the geometry of a generalized cup. The 
cup degenerates to a right circular cylinder when ¢t = 0 and to a 
cone when the bottom die segment shrinks to a point. The de- 
forming surface is assumed to be part of a spherical segment 
with a single radius of curvature. Once the material comes in 
contact with the rigid die surface, it does not deform further. 

The formation of a generalized cup can be divided into three 
stages, as shown in Fig. 2. In stage I, a circular diaphragm of su- 
perplastic material will freely deform as part of a spherical 
dome until it is tangent to the walls of the cup. In the second 
stage (stage II) of formation, the sheet metal lies over the coni- 
cal surface, and the spherical sector moves down inside the die 
with further reduction in radius and height of  the spherical sec- 
tor. The third stage (stage III) of formation starts when the sheet 
just touches the flat bottom surface of the die. In this stage, the 
material is overlaid on the slanted side wall surface as well as 
on the bottom surface as the formation proceeds. The free- 
forming surface is a section of a toroidal sector, and its radius 
and center of curvature change with deformation. 

3.2.1 Stage I 

In stage I (0 _< h > hi), the deformed surface of a circular 
sheet is assumed to be part of a sphere until it is tangent to the 
wall. Let h (Fig. 2) be the instantaneous height of the deformed 
spherical part from the initial position. In stage I, the depth of 

p. - h i  

H i -- '~---. a i---~ 

Stage III--~ 
Fig. 2 Stages of deformation of a generalized cup. 

the spherical segment q is the same as the instantaneous height 
of deformation h. 

In stage I for 0 < h < hi, s is given by Eq 4: 

a(h2~a2/ s = s o [51 

Because the side walls are at an angle, the maximum height 
of deformation, hi, during stage I occurs when the sheet is tan- 
gent to the side walls, where: 

= a ( 1 -  sin 0t] 
hi ~ c ~ - s ~  ) [61 

At the end of stage I, h = h 1 = ql and thickness s = s 1. s 1 is given 
by: 

S 0 ( c o s  2 ~  So 
sl = 2- 1-1 - ~ l n ~ |  = 2-(1 + sin ~) [7] 

; 

3.2.2 Stage H 

In the second stage of cup formation (hi < h < H), the pole 
has reached a height greater than hi, and the side wall contact 
occurs. Consider the sheet that has deformed to a vertical 
height p along the side wall, with thickness s in the unsupported 
region, as shown in Fig. 3. Let the sheet deform by an infinitesi- 
mal vertical height dp with thickness s + ds in the new unsup- 
ported region. 

Let the radius of the spherical segment when the edge height 
is p be b and after a deformation of an infinitesimal vertical 
edge height dp be c: 

b = a - p tan tx 

c = a - (p + dp ) tan tx [8] 

The slant height dl along the side wall is 

d l =  dp 
COS 

[9] 

P 
I S 

v " 

Fig. 3 Formation of deep cup during stage II. 
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The radius of curvature at the edge heights p and p + dp be p" 
and p", respectively, where: 

b a - p  tan tx 
p # ~ - -  _ _  

COS ~ COS IX 

and 

p,,_ c _ ( a - p t a n a ) - d p t a n c t  [10] 
COS IX COS IX 

The depth of the spherical sectors at height p and p +dp are q" 
and q", respectively, as shown in Fig. 3. The volume of the un- 
supported spherical segment (V'dome) at a height p can be ex- 
pressed as a sum of the volumes of newly formed spherical 
segment (WP'dome) and truncated conical segment (W~'dome): 

1I' v"  + V" - -dome -- dome cone 
[11] 

V~dome = 2rCp'q's = 2~p '2 (1 - sin Ix)s [12] 

Hence, the volume of the conical segment for an infinitesimal 
vertical height dp is 

V"cone= ~ (b + c) dtI-s +2+ ds ) [13] 

V " c o n e = X [ 2 ( a - p t a n i x ) - d p t a n i x ] ~ ( s + ~ )  [14]  
COS IX 

V" = 2 x ( a - p t a n i x )  dp s + 2 ~ ( a - p t a n I X )  dp ds 
cone cos IX cos Ix 2 

Neglecting higher order terms: 

[15] 

V"cone = 2n (a - p  tan Ix) dp s [16]  
COS IX 

Volume of the newly deformed spherical segment is 

~'P'dome = 2np"q" (s + ds) [17] 

V" = 2rcp ''2 (1 - sin IX) (s + ds) 
dome 

[18] 

V" = 27t (b - dp t an  IX)2 (1 - sin Ix) (s + ds) 
dome COS 2 IX 

[19] 

(1 - sin IX) [b 2 (s + ds) - 2 b dp s tan IX] [20] 
Vt'dome = 2~ cos2 IX 

Substituting the volumes in Eq 11: 

2xp '2 (1 - sin Ix) s = 2re (1_-_ sin _ct) [b 2 (s + ds) 
COS 2 IX 

- 2 b dp s tan tx] + 2n (a - p tan oO dp 
COS IX 

s [21] 

Neglecting higher order terms: 

2 x b  dp  s - 2 r c  ( 1 - s i n a )  2 b d p s t a n t x  
COS IX COS 2 IX 

- -2~  (1 - sin a) b2 ds 
-- c o s 2  IX 

[22] 

Rearranging and dividing the above equation by b2s: 

ds A dp 
s B (a - p tan cx) 

[23] 

where 

r ¢a--sinO/tano ' 1 
A__L ~ )  cosix _ _ ( l _ s i n a /  

B -  ( l - s i n i x /  ~ cosix ) 

j 
Integrating Eq 23 with the boundary conditions given by: 

[24] 

S=Sl,  p = 0  
s=s ,  p = p  [25] 

yields 

S 1 
[26] 

Equation 26 gives the thickness s at any given depthp in stage 
II, in terms of s 1 and geometric parameters. At the end of stage 
II, the pole would have reached a height H, and the edge height 
p will be H - q 2 ,  where q2 is the depth of the spherical segment 
at the end of stage II. Therefore, the thickness s 2, which is s at h 
- - H - q 2 ,  is given as: 

S O ( 1 _ l ) l n ( a - ( H - q 2 ) t a n t x  / 
s 2 = ~ (1 + sin a)  e~sin a ) ~ a ) [27] 

3.3 Stage I l l  

In stage III (0 < r <_ an), the free surface assumes the shape 
of a toroidal sector whose radius of curvature decreases with 
deformation. The center of curvature moves along a line join- 
ing the center at the end of stage II and the corner of the die, as 
shown in Fig. 4. It can be shown that the slant height along the 
side wall is same as that of the bottom radius, because the de- 
forming sheet is tangential to the die walls. Let the thickness of  
the toroidal section at radius r and r + dr be s and s + ds, as 
shown in the Fig. 4. Let dl be the slant height of  the elemental 
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Fig. 4 Analysis of deformation in stage III. 

conical surface formed while the radius at the bottom increases 
from r to r + dr. The radius of the spherical segment when the 
sheet has touched the bottom wall is denoted as a2, radius of 
curvature as P2, and depth of the spherical segment as q2. 

The centroid x of the sector formed during stage III is given 
by: 

- r (1 - sin 00 

. ~ - / 2 _ ~  / [28] 

where r s is the radius of curvature of  the sector as it deforms: 

F 
rs= P2 11; ----~[, 

2 
t a n - -  

2 

The radius R_about which the sector is rotated to generate the 
surface is r + x, and the surface area of the toroid is 

V r = 2 X R  I s = 2 g R  r s (  2 -  ~ ) s  [29] 

where I is the arc length of the sector. Let the volume of the 
conical section formed along the side walls be AV s and that 
along the bottom wall be AV 6. Therefore: 

Vr = AVs + AVb + Vr + dr [301 

where A V  b and AV s are 

AV b = x [(r + dr) 2 - r 2] (s + ds) = 2re r dr (s + ds) [31 ] 

A V  s = 2~ (a 2 - r sin ~) dr s + 2 x (a 2 dr ds 

- r sin o~ dr d s -  r sin o~ dr s) [32] 

Neglecting the higher order terms, the above two equations re- 
duce to: 

A V b -  2n r dr s 

and 

AV s = 2n (a 2 -  r sin ~) dr s [33] 

The volume of the segments of the toroid formed by rotation of 
the sector about the axis of the cup is given, (Fig. 4) by: 

V r = 2n (b 1 + b2r + b3 r2) s [34] 

and 

V r + a r = 2 ~ [ b l + b 2 ( r + d r ) + b 3 ( r + d r ) 2 ] ( s + d s )  [35] 

where 

b 1 = (1 - sin c~) p~ [36] 

tan 

- r  (1--sin ~ ) / 2 ~  - ~ ) -  ] [38] 
b 3 -  rc _ Ltan / -/ tan  2 )J 
Neglecting the higher order terms in dr and ds, the change in 

volume of the toroidal segment can be written as: 

AV = V r - Vr +dr = - 2 g  (b| + b2r + b3 r2) ds 

- 2~ (b 2 + 2b3r) s dr [39] 

Based on the assumption of constant volume, AV = AV s + AVb: 

2g [a 2 + r (1 - sin ~)] s dr = -21t (b 1 + b2r + b3 r2) ds 

- 2~t (b 2 + 2b3r) s dr [401 

which, after rearranging the terms, will yield the following re- 
lationship: 

ds (a2 +/92) + r (1 - sin ~ + 2b3) 
- dr [411 

S bl + b2r + b3r2 

If  one integrates the above equation with the boundary condi- 
tions: 

s=$2, r = 0  
s = s, r = r [42] 
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In = - 2b3 L bl J \ - )  

11 ( 1 - s i n ~ ) b 2 7  F2b3r+ b2+Y ] - - -  I l n [ - -  b2-Y 
+-Y L~2 2b 3 J /2b34 + b2 + Y b2 _ YJ [43] 

from which one obtains the thickness s(r) during stage III, 
where: 

s0 "a"tan°/ 
s 2 = ~- (1 + sin a) [44] 

and 

q2 = [(a - H tan or) cos a] [45] 

y = •b 2 - 4bib 3 [46] 

4. Special Cases of Generalized Cup 

The formulations developed for the generalized cup can be 
specialized for specific geometry like right circular cylinder, 
truncated cone, and cone. The development of the formulation 
for these special shapes is given below and is also shown in Fig. 
5. 

4.1 Right Circular Cylinder 

The generalized cup developed in the earlier section is a 
deep cup having a constant draft angle c~ to the vertical. Right 
circular cylinder is obtained by setting ~ = 0. From Eq 4: 

s[ = s o [47] 

I 

r ,',, _1 I I _ /r ,  / " ,  

i " , f f /  i 
I_ 
I~ a ;-i 

Fig. 5 Toroidal section of a cylindrical cup. 

From Eq 23 for t~ = 0: 

ds l(1-sin,  / 
s -  a cosot )dp 

[48] 

and upon integration yields s n as: 

So _ P 

S I I = ~  - e  a [49] 

wherep = h -  a. For the third stage: 

in (SlIl]= 1+2b3 Ibl+b2r+b3r2] 
L'2 ) 2b 3 In /  bl J 

11 b27 r 2 b 3 r + b 2 - Y . ~ !  
+7 a-~3Jln[~3r+b2+Y [50] 

where s I, sii, and Sil I are the thicknesses in respective stages, 92 
= a 2 for c~ = 0 and: 

b I = p 2 

, 2 / 

/)3 = l - ~  [51] 

S O h 
S2= ~- e (1 - a  ) 

y ='x,lb2 - ablb 3 [52] 

4.2 Truncated Cone 

The thickness profile for the truncated cone (deep slanted 
cup) can be determined from Eq 4, 26, and 43. For stage I" 

s I = s o [531 

For stage II: 

S O ( 1 llln(a-ptan~t I 
s i i = ~ - ( l  +sinct)eLsi-~a- ) L ~ )  [541 

and for stage 111: 

t s2) 

+ - -  ~2 Y 

1 - s i n o t + 2 b 3  ln~bl+b2r+b3r2q 

2b3 L bl J 

(1-sin~)b2-q2b3 jlnL~-Y'r2b3r+b2+y b22-ylb2+Y] [551 

from which the thickness s(r) during stage 111 can be obtained, 
where constants b 1, b 2, and b 3 are given by Eq 36 to 38 and: 
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so S2 = ~ - ( 1  + s i n  ix)  q2) tan °t / [ 5 6 ]  

and 

q2 = [(a - H tan ix) cos ix] [57] 

y = ~/b 2 - 4bib 3 [58] 

4.3 C o n e  

The angle t~ and initial radius a determine the height H as 
these quantities are related by the equation a = H tan tz. The 
thicknesses in stages I and II are given by Eq 4 and 26, respec- 
tively, and stage I l i  does not exist in this case. 

5. Superplastic Process Model 

The kinematics of deformation developed in the previous 
section is used in the prediction of superplastic process parame- 
ters, which include (1) P - t  loading profile given the optimum e, 
and (2) thickness distribution in the final component. 

Process modeling is a tool used to study the effect of various 
parameters and to determine the optimum conditions for eco- 
nomical forming of various shapes. U4] From the closed form 
solution developed for different shapes, one can determine the 
pressure-time cycle once the thickness profile is known. The 
pressure-time cycle is determined for a constant strain rate (E) 
process, as explained in the following steps. In all of  the cases, 
the height of formation is varied in discrete steps to calculate 
various geometric parameters using equations developed in the 
previous section. Once the current thickness s is known, the 
thickness strain et is evaluated using the relation: 

e t = In s [59] 
S 0 

Because a state of biaxial stress is assumed, from von Mises 
equations, e = - E t and time t is 

t = ---e t /e  [60] 

and pressure P up to the second stage of  deformation is found 
from: 

2~s 
P = [61] 

P 

where ~ = K ~m is known, with the material parameters K and 
rn known a p r io r i .  

In the third stage for a right circular cylinder, there are two 
radii of  curvature for the surface of deformation; hence, the fol- 
lowing relation is used. Let rl and r2 be the two instantaneous 
principal radii of  curvature for the toroidal section. In stage III, 
r l  is the radius of curvature of the meridian plane (meridional 
direction), and r2 is the radius of curvature of the parallel plane 
(circumferential direction). From membrane shell theories: 

(~m 4- Oc _ P [62] 
r 1 r 2 s 

where 

P (R 2 -  r 2) P (R 0 -  r) 

~m - 2 s R o sin ~p ac - 2 s sin ~ff 
[63] 

The ratio 7 is 

t~c R0 sin tp 

~t = (~m - R0 + r sin v/ [64] 

At the middle of the sector M shown in Fig. 5, ~g = tp, and the 
ratio 7 at that point is (a  + r ) / (a  + 3r) because RO = (a  + r) /2 ,  

where a is the radius of the cylindrical cup. The meridonial 
stress (~m is obtained using Eq 14: 

= 13 m ~ [ 6 5 ]  

So once 7is found, (I m can be obtained from the above equation 
because effective stress is known for applying eop t at M. The 
pressure P is given by Eq 63: 

(~m 2 R 0 s sin {p 
e - [66] 

(R 2 - r 2) 

The time of  deformation from the previous step is obtained 
as follows. The thickness strain is E t ---- In s/so and the incre- 
mental circumferential strain at M is 

8~c = In P~/ 
Pi-1  

where 

r i 

Pi = (a  - ri) + sin ~/4 

and 

e c = e c at ( i -  1) + fie c 

and E m = - (E t 4- Ec). The equivalent strain is given by: 

E 4 1 = (E2 m 4- E2c -- gmEc)  ~ [67] 

From effective strain ~, the total time of formation t is evaluated 
a s :  

t = z [68] 
E 
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Fig. 6 Pressure-time cycle for cone, deep slanted, and cylindri- 
cal cups. 
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Fig. 7 Thickness profile for cylindrical cups of various heights 
(aluminUm 7475). 

6. Results and Discussion 

Equations developed in the previous sections were used in 
'the solution to superplastic forming problems of  right circular 
cylinders, deep slanted cups, and cones. Pressure-time loading 
to maintain optimum e was determined by successively solving 
the equations for increasing depth in stages I and II and radius 
in stage HI. Thickness s at various instants of time t can also be 
calculated, which yield the final formed thickness distribution 
in the component. 

The computer program was written in FORTRAN 77 and 
was executed on a VAX 2000 workstation with VMS operating 
system. The program is capable of  handling different shapes by 
appropriate choice of  draft angle tx and bottom width a n ,  as 
shown in Fig. 6. Because the model is statically determinate, 
the thickness profile is insensitive to material parameters; how- 

Fig. 8 Thickness profile for slanted cups of different angle ct 
(aluminum 7475). 

ever, pressure-time depends on the form of  the constitutive 
equations and the actual value of the material constants. 

Figure 6 shows the pressure-time profile for a cone, slanted 
cup, and a cylindrical cup. The dimensions are shown in Fig. 6 
also. The plot is identical for all of these shapes up to the initial 
peak pressure, and then there is a linear drop in pressure in the 
case of  cone becauses/p varies linearly. Acone angle of (x = 30 ° 
maintains a constant e by the application of uniform pressure in 
stage H, as shown in the Appendix. This appendix also shows 
that, with the assumption of uniform thinning, it is not neces- 
sary to design a variable cone angle for the mechanical charac- 
terization test using uniform pressure. This result differs from 
that shown in a technical report by McDonnell Douglas 
Corp. [15,16] In the case of cylindrical and slanted cups, there is 
a decrease in pressure in stage II and a rapid increase in pres- 
sure in stage HI. In the case of a cylindrical cup, p remains con- 
stant in stage II, and the rate of decrease of  p is less severe in 
stage IH compared to a slanted cup. This is reflected in the rapid 
increase in pressure in stage HI for a slanted cup. Also, for same 
total height of the cylindrical and slanted cup, the pressure dur- 
ing stage II remains very close because the ratio s / p  for a 10 ° 
slanted cup is approximately the same as that of the other. How- 
ever, for a cone of  the same total height, s / p  is higher, leading to 
a higher pressure. 

Figures 7 to 9 show the final thickness distribution of the cy- 
lindrical cups, slanted cups, and cones for various geometric 
and material parameters. The resul__ts of forming given in these 
plots follow the power-law model c = K e m , where the material 
constants K = 67500 lbf/(in. 2 sec m) and m_.= 0.55 for aluminum 
7475 alloy and the optimum strain rate is E = 0.0004/s. Figure 7 
shows the thickness distribution for cylindrical cups of  differ- 
ent heights and the same radii. The thickness distribution along 
the side wall follows the same curve until it contacts the bottom 
surface of the respective cups. The thickness at the center of the 
bottom wall is higher than the corners. Minimum thickness oc- 
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Fig. 9 Thickness profile for cones of various half cone angles 
(aluminum 7475). 
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Fig. 10 Effect of strain hardening on forming cycle for an alu- 
minum 7475 alloy for a cylindrical cup. 

curs in the bottom corner where the sheet forms last, because 
the sheet, after bottom contact, does not deform under sticking 
conditions. It is also clear from the plot that the variation in 
thinning is not linear over the side and bottom walls, as shown 
in the equations for the spherical and toroidal sections. 

Figure 8 shows the thickness distribution for slanted cups of  
different draft angle cc It can be observed from the thickness 
profiles that the higher the slope of the side wall, the higher the 
side wall thickness at the top edge. Because the thickness along 
the side wall is less in lower slopes, more volume is available 
for formation of stage HI, resulting in a higher thickness profile 
and causing a crossover, as shown in Fig. 8. The thickness 
along the side wall is plotted against the vertical height of the 
points along the surface. The position numbers refer to the lo- 
cations at the same vertical height along the side wall. The 
minimum thickness occurs at the comers, which refers to posi- 
tion 3 on the plot. 
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Fig. 11 Effect of strain hardening on forming cycle for a cup of 
10 ° slant angle (aluminum 7475). 

Figure 9 shows the thickness distribution for cones of differ- 
ent half cone angle tx. The angle, total height of the cone, and 
time of formation are given in tabular form. The entry die ra- 
dius a being the same, the total height H is increased to obtain 
smaller half cone angle. The thickness profile is higher for a 
higher half cone angle. In the case of  a cone, there is no stage HI 
formation in a generalized cup. The above thickness profiles 
are plotted with the height of formation equal to 80% of the 
height of  stage II. The crossover in thickness profile can be ob- 
served as the cone reaches very close to the bottom, which was 
also observed in the deep slanted cup. 

Figure 10 shows the effect of  different forms of constitutive 
equations on the formability of superplastic alloy. Based on ex- 
perimental data, Story et al. [17] suggested a strain-hardening 
model o = K ~m En, were n is the strain-hardening index, which 
is expressed as n = no ~13. For aluminum 7475 alloy, the con- 
stants are determined by superplastic uniaxial tension test- 
ing [17] as no = 0.0477 and ]3 = -0.24. In the strain-hardening 
model, the forming pressure is less in stage I compared to the 
power-law model t~ = KEm because the stress is low in the initial 
stages, but increases from the middle of stage II where the 
strain is relatively higher. In Fig. 11, the same effects of strain 
hardening are shown for a deep slanted cup of  10 ° draft angle. 
Similar trends are observed for slanted cup as in the previous 
case. It should be noted that there is no variation in final thick- 
ness distribution as already stated. 

7. Summary and Conclusion 

Thickness profile in a generalized cup is evaluated based on 
the geometry of the forming profile. The equations are also ap- 
plicable to cone, right circular cylinder, and deep slanted cups. 
Uniform thinning distribution is assumed in the unsupported 
region, and the thickness of the sheet is assumed to remain con- 
stant once in contact with the die. Pressure-time relationships 
are developed for maintaining superplastic conditions in the 
deforming materials, and the final thickness of  components for 
these shapes is determined. 
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Appendix 

Consider a cone of die radius a, initial thickness so, and half 
cone angle (t, as shown in Fig. Al(a). The thickness Sl at the 
end of stage I is given by Eq 7 as: 

s o 
s 1 =~-  (1 + sinct) [All  

radius of curvature lap is given by Eq 10 as pp = ( a - p  tan a)/cos 
a,  and thickness at a height p from the initial position is given 
by Eq 26 as: 

I - s i n  ot a - p t a n  ct 

in [A2] Sp = S e sina a 

For constant pressure during the second stage of cone forming, 
the following relationship needs to be satisfied, where Pl is the 
radius of curvature at the end of stage I: 

P_! = P__P_P [A3] 
s 1 sp 

Now substituting the actual values in the above relation yields: 

a a - p tan 

C O S  O~ C O S  
m 

S 1 
S 1 e - -  

1 - sin ct In a - p tan a 

sin ~ a 

[A41 

By simplifying and rearranging the terms: 

a - p t a n  a 1 - s i n  a a - p t a n  a 
= e - -  In [ A 5 ]  

a s i n  ct a 

Raising the above equation to logarithm on both sides: 

m l ~  r l  
S o 

S1 ~ r 

I 

a) 
b) 

Fig. A1 (a) Geometry of deformation in a constant angle cone. 
(b) Truncated cone with varying wall thickness. 
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